Two Different Cathodic Protection System
Cathodic protection is a method to reduce corrosion by minimizing the difference in potential between anode and cathode. This is achieved by applying a current to the structure to be protected (such as a pipeline) from some outside source. When enough current is applied, the whole structure will be at one potential; thus, anode and cathode sites will not exist. Cathodic protection is commonly used on many types of structures, such as pipelines, underground storage tanks, locks, and ship hulls.
There are two main types of cathodic protection systems: galvanic and impressed current.
- Galvanic System
A galvanic cathodic protection system makes use of the corrosive potentials for different metals. Without cathodic protection, one area of the structure exists at a more negative potential than another, and corrosion results. If, however, a much less inert object (that is, with much more negative potential, such as a magnesium anode) is placed adjacent to the structure to be protected, such as a pipeline, and a metallic connection (insulated wire) is installed between the object and the structure, the object will become the anode and the entire structure will become the cathode. That is, the new object corrodes sacrificially to protect the structure as shown in Figure 1(a). Thus, the galvanic cathode protection system is called a sacrificial anode cathodic protection system because the anode corrodes sacrificially to protect the structure. Galvanic anodes are usually made of either magnesium or zinc because of these metals’ higher potential compared to steel structures.
- Impressed Current Systems
Impressed current cathodic protection systems use the same elements as the galvanic protection system, only the structure is protected by applying a current to it from an anode. The anode and the structure are connected by an insulated wire, as for the galvanic system. Current flows from the anode through the electrolyte onto the structure, just as in the galvanic system. The main difference between galvanic and impressed current systems is that the galvanic system relies on the difference in potential between the anode and the structure, whereas the impressed current system uses an external power source to drive the current, as shown in Figure 1(b). The external power source is usually a rectifier that changes input AC power to the proper DC power level. The rectifier can be adjusted so that proper output can be maintained during the system’s life. Impressed current cathodic protection system anodes typically are high-silicone cast iron or graphite.